	25.4. Specifying the PDF417 parameters
	Prev 	Chapter 25. PDF417 (2D-Barcode)	 Next

25.4. Specifying the PDF417 parameters

Note
The following section is not meant as a general introduction to the way PDF417
 barcode is specified. It assumes that the reader has a basic understanding of
 the nature of PDF417 encoding. This section will focus on how to make use of the
 methods in the library to specify the various settings for the PDF417 barcodes.

25.4.1. Specifying encoding and input data

The absolute simplest way of encoding data is simply to create a simple string
 representing the data to be encoded and then pass that string as the first argument
 to the Stroke() method in the backend. The encoder will then analyze
 the input data and choose the most efficient space saving encoding schema for this
 data.
The PDF417 standard allows 3 different compaction schema that can be used to
 minimize the number of codewords used for a particular data string. This also means
 that a particular data string may have several different valid barcodes that
 visually looks different.
The available compaction modes are:

	Alpha compaction mode (also known as
 Text compaction mode). Efficient encoding of ASCII 32-126, (inclusively)
 i.e. the normal alphabet including numbers. Encodes 1.8 characters per
 codeword.

	Numeric compaction mode. Efficient
 encoding of numeric data. For long consecutive strings of digits this
 gives a better compaction than the alpha mode. Numeric compaction
 encodes about 2.9 digits per codeword.

	Byte compaction mode. The least
 efficient encoding. Used only when there is a need to encode byte values
 as is, i.e. values in the range 0-255. Please note that many barcode
 readers, especially those with a keyboard wedge, don't send back the
 proper encoding for ASCII values lower than 32 or higher than 126. Byte
 compaction mode encodes roughly 1.2 byte per codeword.

When the automatic encoding is chosen this will create an optimum encoding (from a
 size perspective) of the supplied data. This includes shifting encoding method in
 the middle of the data one or several time depending on the structure of the data.
It is also possible to manually control the exact encodation of the input data.
 This is done by supplying one or more data tuples where the first entry in the tuple
 is the compaction schema and the second the data. To encode the data manually the
 following structure must then be followed:

Figure 25.9. Structure for manually specified encodation schema
$data = array(array(<encoding_mode1> , <data1>),
 array(<encoding_mode2> , <data2>),
 ...
 array(<encoding_modeN> , <dataN>));

The encoding mode is specified as one of three symbolic constants

	USE_TC, (short for USE-TextCompaction) Use Text compaction schema

	USE_NC, (short for USE-Numerical-Compaction) Use Numeric compaction
 schema

	USE_BC, (short for USE-ByteCompaction) Use Byte compaction schema

and the data is specified as a regular text string. Each section of data must
 therefore have the compaction mode specified.
Example 1:
In the following example we will assume that we want to encode the data string

	1

	$data="1234567890"

To use automatic encoding then there is nothing more than specifying this data to
 the Backend::Stroke() method as

	1

	$backend->Stroke($data);

If instead we wanted to make sure that only alpha mode (text) compaction schema is
 used the input data would have to be changed to

	1
2
3
4
5
6

	<?php
$data="1234567890"
$newdata = array(array(USE_TC, $data));
...
$backend->Stroke($newdata);
?>

this will then force the input string to be encoded using only the text compaction
 schema.
If instead we wanted to enforce only numeric compaction the code would have to be
 changed to

	1
2
3
4
5
6

	<?php
$data="1234567890"
$newdata = array(array(USE_NC, $data));
...
$backend->Stroke($newdata);
?>

this will then force the input data string to be encoded using numeric compaction
 schema. ∎
In the above example we just used a single compaction schema to use multiple
 encodation schema we just need to split our data for each of the compaction mode we
 want to use and create an input array. An example will make this clear.
Example 2:
We will assume that we want to encode the string "1234abc567" by
 using numeric compaction for the first 4 digits, then use text compaction for the
 three letters and finally go back to numeric compaction schema for the last three
 digits. For this to work we would have to create an input array as shown below.

	1
2
3
4
5
6
7

	<?php
$newdata = array(array(USE_NC, '1234'),
 array(USE_TC, 'abc'),
 array(USE_NC, '567'));
...
$backend->Stroke($newdata);
?>

∎

Note
Normally there are very few reasons to specify the encodation schema
 manually and it is therefore better to let the library determine the optimum
 encoding by itself.

Using byte compaction mode

Using byte compaction mode is however slightly more complex. The reason is
 that we need, for technical reasons, specify if the size (length) of the data to
 be encoded is an even multiple of 6 or not.
Hence, there are actually two Byte code compaction schema

	USE_BC_E6 (for even multiples of 6)

	USE_BC_O6 (for odd data).

So to encode data using byte compaction mode the following template should be
 used to determine the proper byte compaction variant.

	1
2
3
4
5
6

	<?php
$even6 = (strlen($data) % 6 === 0);
$newdata = array(array($even6 ? USE_BC_E6 : USE_BC_O6, $data));
...
$backend->Stroke($newdata);
?>

Caution
Remember that strlen() is not multi byte character
 encodation safe. If multi-byte characters should be encoded then the
 mb_strlen() should be used.

Caution
Note that several keyboard wedge barcode scanners do not handle byte
 values < 32 or > 127 properly.

25.4.2. Encoder option: Adjusting the number of data columns

PDF417 barcode is made up of a number of rows and columns. The library allows the
 specification of the number of columns and it will then determine the necessary
 number of rows to hold all the given data + the error correction information.
Since each row has some overhead (start/stop and sync codewords) the overall area
 taken by the barcode will be minimized by trying to use as many columns as possible.
 The standards allow for up to 30 columns (and 90 rows). The most practical limit is
 how wide data the scanner is able to handle. Most hand hold scanner will usually not
 work very reliable with barcodes which are more than ~10cm wide.

25.4.3. Encoder option: Adjusting the error level

All PDF417 barcodes have a minimum of two error detection codewords. Above that
 the user is free to specify a higher level which will allow not only error detection
 but also (some) error correction.
The error level determines how much redundancy is added in the barcode label. A
 high level of redundancy ensures that a partially damaged barcode can still be
 correctly read by the barcode scanner. The downside is that the higher the error
 level the larger the barcode gets and since the total number of codewords in a
 PDF417 barcode has a maximum limit of 928 also less real data. Table 25.1 shows the available error levels and
 how that will impact the maximum data payload. Table 25.1 also shows the error correcting
 capacity. For example using error level 4 means that 15 of the codewords can have
 errors and still be corrected.

Table 25.1. Available error levels
	Error level 	
 Error correction

 codewords

 	
 Error correction

 capacity

 	
 Maximum

 payload

	
 0

 	
 2

 	0	
 923

	
 1

 	
 4

 	1	
 921

	
 2

 	
 8

 	3	
 917

	
 3

 	
 16

 	7	
 909

	
 4

 	
 32

 	15	
 893

	
 5

 	
 64

 	31	
 861

	
 6

 	
 128

 	63	
 797

	
 7

 	
 256

 	127	
 669

	
 8

 	
 512

 	255	
 413

The recommended minimum error level is a dependent on the payload size and is
 given below.

Table 25.2. Recommended error levels
	
 Data codewords

 	
 Recommended

 error level

	
 1 to 40

 	
 2

	
 41 to 160

 	
 3

	
 161 to 320

 	
 4

	
 321 to 863

 	
 5

Note that the number of codewords is not the same thing as, for example, the
 number of digits or letters in a string to be encoded. Depending on the chosen
 encoding the number of symbols per codeword is always > 1. For example in numeric
 compaction mode (encoding) each codewords encode, on average, 2.93 digits.
The error level is specified as an integer in the range [0-8] inclusively and can
 be specified when creating a particular encoder. For example the code below uses the
 default error correction (2).

	1
2
3
4
5
6
7

	<?php
// Use 10-columns for data
$columns =10;

// Create a new encode using the default error correction
$encoder = new PDF417Barcode ($columns);
?>

While the following specifies an error correction level of 6

	1
2
3
4
5
6
7

	<?php
$columns = 10; // Use 10-columns for data
$errlevel = 6; // Error correction level 6

// Create a new encode using the default error correction
$encoder = new PDF417Barcode ($columns, $errlevel);
?>

In addition to specifying the number of data columns and error level in the
 creation of the encoder it is also possible to adjust them afterwards.
For example, it might be necessary to create the encoder in the beginning of a
 script and then use the same encoder with different settings controlled by, for
 example, entries in a DB.
The two encoder methods

	Encoder::SetErrLevel($aErrLevel)

	Encoder::SetColumns($aColumns)

are used for this purpose. The code snippet below does the exact same things as
 the code snippet above but using these two methods after the encoder has been
 instantiated instead.

	1
2
3
4
5
6
7
8
9

	<?php
$columns = 10; // Use 10-columns for data
$errlevel = 6; // Error correction level 6

// Create a new encode using the default error correction
$encoder = new PDF417Barcode();
$encoder->SetColumns($columns);
$encoder->SetErrLevel($errlevel);
?>

25.4.4. Truncated PDF417

Warning
Not all PDF417 barcode readers can handle truncated PDF417

In situations where the physical size of the label is restricted one might use the
 truncated version of the PDF417 code.
This works by simply stripping of some redundant information on the right side of
 the barcode. This will also make the barcode more sensible for damage.
The two images below shows a normal version together with the truncated version
 (both barcodes encode the same information).

	

Figure 25.10. Normal PDF417

 	

Figure 25.11. Truncated PDF417

To use the truncated version the method the following encoder method is
 used

	Encoder::SetTruncated($aFlg=true)

The following code snippet shows how this can be used

	1
2
3
4
5
6
7
8
9
10
11

	<?php
$columns = 10; // Use 10-columns for data
$errlevel = 4; // Error correction level 4
$truncated = true;

// Create a new encode using the default error correction
$encoder = new PDF417Barcode();
$encoder->SetTruncated($truncated);
$encoder->SetColumns($columns);
$encoder->SetErrLevel($errlevel);
?>

	Prev 	Up	 Next
	25.3. Creating barcodes 	Home	 25.5. Adjusting the output

